1		a + (10 - 1)d = 11.1 and $a + (50 - 1)d = 7.1$	M1	may be implied by $40d = \pm 4$ or embedded in attempt to solve	condone one slip in coefficient of d
		d = -0.1	A1	if unsupported, B2 for one of these and B3 for both	
		<i>a</i> = 12	A1		
		$\frac{1}{2} \times 50$ (<i>their a</i> + 7.1) with <i>a</i> > 11.1	M1	or $\frac{50}{2}(2a + (50-1)d)$ with $a > 11.1$ and $d < 0$	
		477.5 or $477\frac{1}{2}$ or $\frac{955}{2}$ cao	A1		if M0 , B2 for any form of correct answer www
			[5]		
2	(i)	3×3^7 oe	M1	condone 1×3 ⁷	do not award if only seen in sum of terms of GP
		6561	A1	or B2 if unsupported	if 0, SC1 for 2187 unsupported
			[2]		
2	(ii)	valid attempt to sum a GP with $r = 3$ and $n = 15$	M1	eg $3 + 3^2 + \dots + 3^{15}$	must see at least first two terms and last term NB 7174453 implies M1 from
		$\frac{3(3^{15}-1)}{6}$ oe	M1		$1+3++3^{14}$
		3-1	A1	or B2 if M1M0 or B3 if unsupported	
		21 523 359	[3]		

2	(iii)	$\frac{3(3^n-1)}{3-1} > 1000000 \text{ oe}$	M1*		M0 for working backwards M0 if = or < used
		eg $3^{n+1} > 2000003$ or $3^n > \frac{2000000}{3} + 1$ www correctly taking logs of both sides eg $(n + 1) \log 3 > \log 2000003$ or $n \log 3 > \log 2000003 - \log 3$	M1dep*	eg $\log 3^{n+1} > \log 2000003$ www or $\log 3^n + \log 3 > \log 2000003$ www; may be implied by next stage of working	at least one previous progressive interim step needed with no wrong working; M0dep* for $\log(3^n - 1) > \dots$
		eg $n + 1 > \frac{\log 2000003}{\log 3}$ and completion to $n > \frac{\log 2000003}{\log 3} - 1$	A1	without any wrong working	do not allow recovery from bracket errors at any stage
		n = 13 seen	B1	B0 for $n \ge 13$ or $n > 13$	
			[4]		
2	(iv)	valid attempt to sum a GP with $r = 2$ and $n = 15$ their 21 523 359 – their 65 534 21 457 825 isw	M1* M1dep* A1	if correct eg $2 + 2^2 + \dots + 2^{15} = 65\ 534$ with their $65\ 534 <$ their $21\ 523\ 359$ allow B3 for $21\ 457\ 825$ unsupported	NB 32767 implies M1 from $1 + 2 + + 2^{14}$
			[3]		

3	(i)	$21\left(\frac{1}{1+2} + \frac{1}{2+2} + \frac{1}{3+2} + \frac{1}{4+2} + \frac{1}{5+2}\right) \text{ oe}$	M1	may be implied by correct answer	NB $7 + 5.25 + 4.2 + 3.5 + 3$ M0 if extra terms or terms missing
		22.95 or $\frac{459}{20}$ or $22\frac{19}{20}$	A1		
			[2]		
3	(ii)	a + 45 cao	B1	mark the final answer must be explicitly stated	
		$\frac{10}{2} a + a + their 45$	M1	or $\frac{10}{2} 2a + (10 - 1) \times 5$	condone wrongly attributed answers
		5(2a+45) or $10a+225$ cao isw	A1	ignore further work attempting to find <i>a</i>	B2 if correct answer derived from adding terms separately
			[3]		

4	ar = 24 (i)	B1*		allow $ar^{2-1} = 24$
	$\frac{a}{1-r} = 150$ (ii)	B1*		
	correct substitution to eliminate one unknown	M1dep*	eg subst. of $a = 150(1 - r)$ or $r = \frac{150 - a}{150}$ in (i) alternatively, subst. of $a = \frac{24}{r}$ or $r = \frac{24}{a}$ in (ii)	if M0, B1 for both values of <i>r</i> and B1 for both values of <i>a</i> , or B1 for each pair of correct values NB $150r^2 - 150r + 24$ [= 0] $a^2 - 150a + 3600$ [= 0]
	r = 0.8 or 0.2	A1	or A1 for each correct pair of values	A0 if wrongly attributed
	a = 30 or a = 120	A1	ignore incorrect pairing if correct values already correctly attributed	A0 if wrongly attributed
		[5]		

Question		on	Answer	Marks	Guidance
5	(i)		2S cao	B1	
5	(ii)		$\frac{a}{1-r^2}$	M1	if M0, SC1 for $\frac{1-r}{1-r^2} \times S$ oe
			$\frac{S}{1+r}$ or $\frac{1}{1+r}S$	A1 [2]	

6	(5), 8, 11, (14),isw	B1		
	a = 5 and $d = 3$ soi	B1		
	$S_{50} = \frac{50}{2} (2 \times 5 + (50 - 1) \times 3)$ oe	M1		if M0, award B2 if 3925 is obtained
	3925	A1 [4]	if M0, SC1 for use of $a = 8$ and obtaining 4075	from summing individual terms or if unsupported

Q	Question		Answer	Marks	Guida	nce
7	(i)		ar = 6 oe $\frac{a}{1-r} = 25 \text{ oe}$	B1 B1	must be in <i>a</i> and <i>r</i> must be in <i>a</i> and <i>r</i>	
			$25 = \frac{a}{1 - 6/a}$	M1	or $\frac{6}{r} = 25(1-r)$	NB assuming $a = 10$ earns M0
			$a^{2}-25a+150$ [= 0] a = 10 obtained from formula, factorising, Factor theorem or completing the square	A1 A1	or $25r^2 - 25r + 6$ [= 0] r = 0.4 and r = 0.6	All signs may be reversed
			<i>a</i> = 15	A1	a = 15	if M0, B1 for $r = 0.4$ and 0.6 and B1 for $a = 15$ by trial and improvement mark to benefit of candidate
			r = 0.4 and 0.6	A1 [7]	$a = \frac{1}{0.6} = 10$ oe	
7	(ii)		$10 \times (3/5)^{n-1}$ and $15 \times (2/5)^{n-1}$ seen	M1		
			15 × 2 ^{<i>n</i>-1} : 10 × 3 ^{<i>n</i>-1} or 3 × $\frac{2^{n-1}}{5^{n-1}}$: 2 × $\frac{3^{n-1}}{5^{n-1}}$	M1	may be implied by $3 \times 2^{n-1} : 2 \times 3^{n-1}$	condone ratio reversed
			$3 \times 2^{n-1} : 2 \times 3^{n-1}$	A1	and completion to given answer www	condone ratio reversed
				[3]		